• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar
  • Home
  • Research
  • Publications
  • News
  • People
  • Opportunities
  • Links
  • Contact Us

Bioastronautics and Human Performance

Texas A&M University College of Engineering

Physiological Performance

Artificial Gravity as a Countermeasure for Human Spaceflight Deconditioning

There have been proposals over the years for centrifuge modules on the ISS to study artificial gravity. Image Credit: Mark Holderman/NASA.

Astronauts experience a strong physiological deconditioning during space missions, primarily due to the weightless conditions. Some of these adverse consequences include bone loss, muscle atrophy, sensory-motor/vestibular deconditioning, visual impairment, and overall cardiovascular adaptation, which may lead to orthostatic intolerance when astronauts are exposed again to a gravitational environment. Physiological deconditioning will be even more challenging in future long-duration space missions, for example to Mars, in which astronauts will be exposed to weightlessness for six to eight months before landing without external help to support egress. In order to mitigate these negative effects, several countermeasures are currently in place, particularly very intensive exercise protocols. However, despite these countermeasures, physiological deconditioning still persist to a certain degree, highlighting the need for new approaches to maintain the astronauts’ physiological state within acceptable limits.

Artificial gravity (generated by centrifugation) has long been suggested as a comprehensive countermeasure that is capable of challenging multiple physiological systems at the same time, therefore maintaining overall health during extended weightlessness. However, human centrifuges hasn’t been tested in space, and there are still many questions about its implementation (including centrifuge configuration, exposure time, gravity level, gravity gradient, and use/intensity of exercise, etc). We want to investigate these research questions using a combination of human experiments on ground-based centrifuges and modeling techniques of physiological systems to complement the experimental results.

Exercise using the Hybrid Ultimate Lifting Kit (HULK)

Astronauts experience physiological deconditioning in space due to the extended exposure to microgravity including, but not limited to, muscle atrophy, loss of strength, and bone loss. Current countermeasures on the International Space Station include resistance training as well as aerobic exercises, and the use of the Advance Resistive Exercise Device (ARED) has been effective in reducing spaceflight musculoskeletal deconditioning. However, the ARED is a bulky device and compact devices that minimize mass and volume are necessary for use within the new space exploration vehicles. In collaboration with NASA Ames, we are investigating exercise performance on the Hybrid Ultimate Lifting Kit (HULK), a new lighter and more compact exercise device under development.

Augmenting Exercise Protocols With Interactive Virtual Reality Environments

Adherence to exercise has long been a bane of the modern human experience, despite its litany of extolled virtues. A variety of strategies have developed over the decades to encourage us to stick with our fitness goals, but as technology improves the fidelity of the virtual world to the real one, many once-implausible strategies are becoming plausible.
Team dynamics, an engaging environment, and a personalized program are just a few of the strategies which can be combined and employed using a virtual reality system.  Imagine: instead of looking at the inside of a ship’s hull for six months, you could don a helmet and join any number of other participants (real or virtual) across any distance or time while you work out.

This study will examine the efficacy and viability of such a technology using already-established exercise protocols from the International Space Station and previous NASA studies. This research will be done in collaboration with former astronaut Dr. Gregory Chamitoff’s ASTRO Center and the Human Clinical Research Facility.

© 2018–2023 Bioastronautics and Human Performance Log in

HRBB Rm 203

College Station, Texas 77840

Texas A&M Engineering Experiment Station Logo
  • Department of Aerospace Engineering
  • Twitter
  • State of Texas
  • Open Records
  • Risk, Fraud & Misconduct Hotline
  • Statewide Search
  • Site Links & Policies
  • Accommodations
  • Environmental Health, Safety & Security
  • Employment