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INTRODUCTION

Future missions to the Moon and Mars further humanity's trek into space and
simultaneously relay groundbreaking knowledge back to Earth. Equipment
deployment, sustainable outpost construction, geological sampling, and mis-
sion-facilitating resource discovery are the key tasks involved in this trajectory
and result in a substantial increase in the number and complexity of extrave-
hicular activities (EVAs). In particular, planetary EVAs will be more complex
than those conducted on the International Space Station due to the required
ambulation between work sites on the surface [Mars Architecture Steering
Group, 2009]. Gas-pressurized spacesuits, such as the current Exploration
Extravehicular Mobility Unit (xEMU), can be cumbersome. High pressure,
improper fit, significant mass penalties, and movement-induced volume fluc-
tuations inhibit astronaut performance and negatively impact mission success
[Anderson etal., 2013, Scheuring etal., 2009, Belobrajdic etal., 2021, and Kluis
etal., 2021]. To mitigate these operational shortcomings and support mission
planning, a robust metabolic model for planetary ambulation is advantageous
[Marquez et al., 2008]. An accurate model for EVA ambulation will require a
robust energy expenditure model for walking in hypogravity (i.e.,, 0 < g < 1)
environments. Unfortunately, current metabolic models for walking in Earth
gravity vary widely in predictive performance and poorly account for changes
in gravity level, if atall [Norcross et al., 2010, Carr et al., 2009, Marquez, 2007,
Givoni et al., 1971, and Bobbert, 1960].

While there is an abundance of physiological, biomechanical, and computa-
tional information available regarding ambulation under gravitational acceler-
ation equal to 1-g, very little is known about human movement in sustained
nypogravity. In addition to comparing three hypogravity analogs, this study
presents a plan to investigate ambulation in a partial gravity environment
and proposes an approach to evaluate experimental and open-source data.
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COMPUTATIONAL FRAMEWORK & COMPARISON

A robust metabolic model for partial gravity ambulation is a valuable tool for
future EVA planning, Lunar and Martian mission operations, and spacesuit
performance measurements [Sainz Ubide et al., 2020]. A metabolic model
aids in identifying the key contributing factors to overall energy expenditure
and helps determine designs and methodologies for reducing an astronaut’'s
total metabolic cost.

Hypogravity analogs form the basis for which the computational framework
Is validated. A comparison can be made between the following hypogravity
analogs: body weight support systems [Farley et al., 1992, Wortz et al., 1966,
and Hazard, 1965], water immersion [Margaria et al.,, 1957 and Ferguson et
al., 1963], and Lower Body Positive Pressure (LBPP) [Cutuk et al., 2006]. Each
analog has advantages and disadvantages in the context of modeling human
ambulation in partial gravity. Recognizing the key features of each will allow
for a more precise and complete understanding of their contributions to
the field.

The mechanical nature of body weight support systems engenders their
simplistic usage. These mechanisms are typically used in conjunction with
a treadmill to assess metabolic rates, gait patterns, kinetics, and general
biomechanics. However, body harnesses typically used with this hypograv-
ity analog might cause an uneven distribution of vertical force, impacting
a subject’s gait pattern [Mignardot et al., 2017]. The NASA Active Response
Gravity Offload System (ARGOS) uses a body weight support system to test
and evaluate spacesuits. This device is shown in Figure 1 [Bekdash et al., 2020].
Simpler devices may also be used for unsuited hypogravity tests, such as
the "Moonwalker III" simulator at the Massachusetts Institute of Technology
[Harvey, 2020].

Hypogravity can also be simulated with buoyant forces. Complete and partial
water immersion exploits buoyant forces to offload the subject to simulate
hypogravity. Unfortunately, water immersion studies entail complex testing
and machinery. Additionally, the water surrounding the subject induces
resistance to movement, although hydrodynamic studies have indicated
that the impact of water resistance on metabolic rate may contribute as
little as 6% [Newman et al., 1994]. NASA uses water immersion analogs for
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FIGURE 2: Astronaut training in the neutral buoyancy laboratory (NBL) where microgravity
conditions can be simulated.
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EVA training (Figure 2) [Davis et al., 2019], and the University of Maryland uses
water immersion analogs for biomechanics testing [Mirvis, 2011].

Another analog, LBPP, increases air pressure on the lower portion of a subject,
creating a lifting force with minimal disturbances to gait mechanics [Tajino
etal., 2019]. While the positive pressure creates an even distribution of force
across the lower body of the subject, there are concerns in using the device
due to the high-pressure differences between upper and lower halves of the
body. In addition, these systems are complex; unintended horizontal forces
can arise from poor interfaces between the human and the device [Cutuk
et al.,, 2006 and Grabowski et al., 2008]. The device used by Cutuk et al.
capitalizes on a rigid structure with a flexible seal while the device used by
Gabrowski and Kram employs a flexible pressurized tent.

FUTURE WORK

To enhance current metabolic models for partial gravity ambulation, body
weight support tests will be completed on a treadmill to simulate multiple
hypogravity environments. Twelve subjects between the ages of 18 and 45
will be offloaded using a crane and harness mechanism. Subject heights,
weights, and leg lengths will be measured prior to testing. Each subject will
walk at speeds ranging from 1 to 4 mph at gravity levels ranging from 0.12-g
to 1-g. A portion of the 1-g trials will include walking with the addition of 25
and 50 pounds. Throughout these tests, the COSMED K5 wearable meta-
bolic system will collect gas calorimetry data while a VICON motion capture
system will collect kinematic data. In addition, ground reaction forces will
be sampled with force plates located in the treadmill. The data and results
from these tests will be integrated into a larger pool of metabolic data for
ambulation in a variety of gravity levels, speeds, suited conditions, and hypo-
gravity analogs. Models will then be created from this data using multiple
methods including classical multivariate regression and machine learning
techniques such as recurrent neural networks. These models will help with
future spacesuit designs and the integration of new technologies [Kluis et
al., 2021 and Kluis et al., 2021].
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