ACUTE DOSE-RESPONSE OF THE INTERNAL JUGULAR VEIN TO GRADED HEAD UP AND HEAD DOWN TILT

Richard S. Whittle¹, Bonnie J. Dunbar², Ana Diaz-Artiles³

^{1,2,3}Department of Aerospace Engineering, Texas A&M University ³Department of Kinesiology and Sport Management, Texas A&M University

¹rswhittle@tamu.edu, ²bjdunbar@tamu.edu, ³adartiles@tamu.edu

INTRODUCTION: Microgravity induced cephalad fluid shift has recently been associated with altered jugular venous flow, including flow stasis and reversal. On long-duration missions, it has been hypothesized that this altered flow could lead to increased thrombogenicity, with a resultant elevated embolic risk. The aim of this study is to generate gravitational dose-response curves of the common carotid artery (CCA) and the internal jugular vein (IJV) hemodynamic responses using a tilt paradigm. This investigation will improve the understanding of the vascular response to altered-gravity and provide a baseline that can be used to compare the magnitude of these changes during spaceflight, as well as the efficacy of measures to counteract altered blood flow in the neck.

METHODS: Twelve male subjects (age 27.2 ± 2.7 years, height 179.0 ± 8.3 cm, weight 84.7 ± 18.7 kg) were subjected to graded tilt from 45° head-up through to 45° head-down in 15° increments, in both supine (face up) and prone (face down) positions. Ultrasonography of the left and right CCAs and IJVs, and jugular venous pressures (P_{IJV}) were recorded at each tilt angle.

RESULTS: The cross-sectional area of the CCA, A_{CCA} , did not significantly change with tilt (*p*=0.262) or position (*p*=0.361), and there was no significant difference between the left and right sides (*p*=0.849). In contrast, IJV cross-sectional area, A_{IJV} , and pressure, P_{IJV} , were both highly dependent on tilt in a non-linear fashion (*p*<0.001 in both). Further, the right IJV was significantly larger than the left IJV (*p*<0.001) and expanded more rapidly with tilt than its left counterpart. P_{IJV} was equivalent in the left and right sides (*p*=0.775) but was significantly higher in the prone position (*p*<0.001).

DISCUSSION: Gravitational dose-response models quantifying the expansion and increase in pressure of the IJV in tilt were constructed using generalized additive mixed-effects models. These dose-response curves were compared with existing data from parabolic flight and spaceflight studies, showing good agreement on an acute timescale. The quantification of fluid shift in altered-gravity informs the understanding of the pathogenesis of spaceflight-induced venous thromboembolic risk. Future investigations will collect similar data in female subjects and will compare these dose-response curves to interventions focused on reducing cephalad fluid shift, such as lower body negative pressure and short-radius centrifugation.

LEARNING OBJECTIVES

1. The audience will learn about quantitative changes in the common carotid artery and internal jugular veins due to altered-gravity environments.

2. The audience will learn about the relationship between spaceflight induced cephalad fluid shift and increased risk of venous thromboembolism events.

QUESTIONS

- 1. The common carotid artery and internal jugular vein both expand significantly in headdown tilt
 - a. True
 - b. False
- 2. Which of the following are risk factors for thrombosis?
 - a. Intravasucular vessel wall damage
 - b. Stasis of flow
 - c. Presence of a hypercoagulable state
 - d. All of the above
- 3. The expansion of the internal jugular vein in head-down tilt is highly non-linear
 - a. True
 - b. False