• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar
  • Home
  • Research
  • Publications
  • News
  • People
  • Opportunities
  • Links
  • Contact Us

Bioastronautics and Human Performance

Texas A&M University College of Engineering

The Impact of Oral Promethazine on Human Whole-Body Motion Perceptual Thresholds

Diaz-Artiles, A., Priesol, A. J., Clark, T. K., Sherwood, D. P., Oman, C. M., Young, L. R., Karmali, F.

Journal of the Association for Research in Otolaryngology, 18(4): 581–590

August, 2017

Despite the widespread treatment of motion sickness symptoms using drugs and the involvement of the vestibular system in motion sickness, little is known about the effects of anti-motion sickness drugs on vestibular perception. In particular, the impact of oral promethazine, widely used for treating motion sickness, on vestibular perceptual thresholds has not previously been quantified. We examined whether promethazine (25 mg) alters vestibular perceptual thresholds in a counterbalanced, double-blind, within-subject study. Thresholds were determined using a direction recognition task (left vs. right) for whole-body yaw rotation, y-translation (interaural), and roll tilt passive, self-motions. Roll tilt thresholds were 31 % higher after ingestion of promethazine (P = 0.005). There were no statistically significant changes in yaw rotation and y-translation thresholds. This worsening of precision could have functional implications, e.g., during driving, bicycling, and piloting tasks. Differing results from some past studies of promethazine on the vestibulo-ocular reflex emphasize the need to study motion perception in addition to motor responses.

Recent Publications

  • The Impact of Oral Promethazine on Human Whole-Body Motion Perceptual Thresholds
  • Vestibular stimulation interferes with the dynamics of an internal representation of gravity
  • PALLAS: A Portable Asteroid Lift and Lock Aggregate System
  • Physiological and Comfort Assessment of the Gravity Loading Countermeasure Skinsuit During Exercise
  • Effects of artificial gravity on the cardiovascular system: Computational approach

© 2018–2025 Bioastronautics and Human Performance Log in

HRBB Rm 203

College Station, Texas 77840

Texas A&M Engineering Experiment Station Logo
  • Department of Aerospace Engineering
  • Twitter
  • State of Texas
  • Open Records
  • Risk, Fraud & Misconduct Hotline
  • Statewide Search
  • Site Links & Policies
  • Accommodations
  • Environmental Health, Safety & Security
  • Employment