• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar
  • Home
  • Research
  • Publications
  • News
  • People
  • Opportunities
  • Links
  • Contact Us

Bioastronautics and Human Performance

Texas A&M University College of Engineering

Combining ergometer exercise and artificial gravity in a compact-radius centrifuge

A. Diaz, C. Trigg, and L.R. Young

Acta Astronautica 113: 80-88

August, 2015

Humans experience physiological deconditioning during space missions, primarily attributable to weightlessness. Some of these adverse consequences include bone loss, muscle atrophy, sensory-motor deconditioning, and cardiovascular alteration, which may lead to orthostatic intolerance when astronauts return to Earth. Artificial gravity could provide a comprehensive countermeasure capable of challenging all the physiological systems at once, particularly if combined with exercise, thereby maintaining overall health during extended exposure to weightlessness. A new Compact Radius Centrifuge (CRC) platform was designed and built on the existing Short Radius Centrifuge (SRC) at the Massachusetts Institute of Technology (MIT). The centrifuge has been constrained to a radius of 1.4 m, the upper radial limit for a centrifuge to fit within an International Space Station (ISS) module without extensive structural alterations. In addition, a cycle ergometer has been added for exercise during centrifugation. The CRC now includes sensors of foot forces, cardiovascular parameters, and leg muscle electromyography. An initial human experiment was conducted on 12 subjects to analyze the effects of different artificial gravity levels (0 g, 1 g, and 1.4 g, measured at the feet) and ergometer exercise intensities (25 W warm-up, 50 W moderate and 100 W vigorous) on the musculoskeletal function as well as motion sickness and comfort. Foot forces were measured during the centrifuge runs, and subjective comfort and motion sickness data were gathered after each session. Preliminary results indicate that ergometer exercise on a centrifuge may be effective in improving musculoskeletal function. The combination is well tolerated and motion sickness is minimal. The MIT CRC is a novel platform for future studies of exercise combined with artificial gravity. This combination may be effective as a countermeasure to space physiological deconditioning.

Recent Publications

  • The Impact of Oral Promethazine on Human Whole-Body Motion Perceptual Thresholds
  • Vestibular stimulation interferes with the dynamics of an internal representation of gravity
  • PALLAS: A Portable Asteroid Lift and Lock Aggregate System
  • Physiological and Comfort Assessment of the Gravity Loading Countermeasure Skinsuit During Exercise
  • Effects of artificial gravity on the cardiovascular system: Computational approach

© 2018–2025 Bioastronautics and Human Performance Log in

HRBB Rm 203

College Station, Texas 77840

Texas A&M Engineering Experiment Station Logo
  • Department of Aerospace Engineering
  • Twitter
  • State of Texas
  • Open Records
  • Risk, Fraud & Misconduct Hotline
  • Statewide Search
  • Site Links & Policies
  • Accommodations
  • Environmental Health, Safety & Security
  • Employment